PB 289900

REPORT NO. DOT-TSC-RSPA-78-21

DYNAMIC URBAN GROWTH MODELS

P.M. Allen J.L. Deneubourg M. Sanglier

University of Brussels Brussels, Belgium

INTERIM REPORT DECEMBER 1978

DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION RESEARCH AND SPECIAL PROGRAMS ADMINISTRATION Transportation Systems Center Office of Systems Research and Analysis Cambridge MA 02142

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

NOTICE

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

1. Factor Mathematical Structure 2. Generosant Accession Net. 3. Response Network Structure 0.07 - TSC - RSPA - 78 - 21 2. This and Schnitz 3. Response Network Structure 2. This and Schnitz 3. Response Network Structure 3. Response Network Structure 2. This and Schnitz 3. Response Network Structure 3. Response Network Structure 2. This and Schnitz 3. Response Network Structure 3. Response Network Structure 2. Federal Gradient Response Structure 4. Structure 4. Providence Structure 2. Sector Structure 3. Structure 0. Structure 0. Structure 2. Sector Structure 3. Structure 0. Structure 0. Structure 2. Sector Structure 3. Structure 0. Structure 0. Structure 2. Sector Structure 3. Structure 1. Structure 0. Structure 2. Sector Structure 3. Structure 1. Structure 0. Structure 2. Sector Structure 3. Structure 1. Structure 1. Structure 2. Structure 3. Structure 1. Structure 1. Structure 1. Structure 2. Sector Structure 3. Structure 1. Structure 1. Structure 1. Structure 1. Structur				Technical Report Documentation Page
DOT-TSC-RSPA-78-21 Provide Statistics 4. Trils and Matrix Provide Statistics 2. Trils and Matrix Provide Statistics DYNAMIC URBAN GROWTH MODELS Provide Statistics 7. Andmed) Provide Statistics P.M. Allen, J.L. Deneubourg and M. Sanglier DOT-TSC-RSPA-78-21 8. Provide Statistics DOT-TSC-RSPA-78-21 9. Machaelee DOT-TSC-RSPA-78-21 9. Statistics DOT-TSC-RSPA-78-21 9. Statistis DOT-TSC-RSPA-78-21	1. Report No.	2. Government Acce	ssion No.	3. Recipient's Catalog No.
4. The set Subme 1. Example 1978 4. The set Subme 1. Example 1978 DYNAMIC URBAN GROWTH MODELS 2. Example 1978 7. Author(s) 1. Deneubourg and M. Sanglier 7. Author(s) 0. Fateming Organization Reset No. 9. Performing Organization Nens and Address 10. Wey Unit No. (TRAIS) University of Brussels* 10. Wey Unit No. (TRAIS) Doration of Grant Statement of Transportation 10. Wey Unit No. (TRAIS) 10. Statement of Transportation 10. Wey Unit No. (TRAIS) 11. This report and Address 10. Wey Unit No. (TRAIS) 12. Separating Agency News and Address 10. OT -TSC - 1185 13. Type of Report and Period Covered 11. This report the concept of "order by fluctuation," that has appeared recently in physico-chemical and biological systems, is applied to the description of urban growth. It is shown that fluctuations play a vital role in the evolutionary process of urban growth. The evolution of a complex system connot be known simply by studying deterministic equations describing the system. It is necessary, in addition, to study the offects of fluctuations, or historical accident, which can drive the system to new modes of urban growth. The evolution of a transportation - sensitive dynamic model of the evolution of the organization of urban populations was developed. 12. Key Weeds 13. Distinguise Statement Urban, Interurban, Interurban, Intransportation 12. Securit Ges	DOT-TSC-RSPA-78-21		ş	PR2899nn
DYNAMIC UREAN GROWTH MODELS Performing Organization Report No. Performing Organization No. Per	4. Title and Subtitle			5. Report Data December 1978
7. Ander(s) 6. Performing Orgenization Resert No. P.M. Allen, J.L. Deneubourg and M. Sanglier DOT-TSC-RSPA-78-21 9. Performing Orgenization Nome and Address 10. Wext Wait Wei, (TRAIS) University of Brussels* DOT-TSC-RSPA-78-21 12. Secondity Agency Nems and Address 10. Wext Wait Wei, (TRAIS) 12. Secondity Agency Nems and Address 10. Wext Wait Wei, (TRAIS) 12. Secondity Agency Nems and Address 10. Wext Wait Wei, (TRAIS) 13. Type of Repart Interim Control of Transportation The entrol of Scient Scient Systems Center 14. Secondity Of Scient Scient Systems Center DOT-TSC-1185 15. Supplementary Nets 14. Secondity Agency Cede 14. Abutedt 14. Secondity Agency Cede 15. Supplementary Nets 14. Seconditions of urban growth. It is shown that full cutations play a vital role in the evolution ary process of urban growth. The evolution of a complex system cannot be known simply by studying deterministic equations describing the system. It is necessary, in addition, to study the effects of fluctuations, or historical accident, which can drive the system to new models of urban growth and the appearance of innovations at chance locations in an economic region, a transportation -sensitive dynamic model of the evolution of urban populations was developed. 17. Key Werds 18. Distribution Statement Urban, Interurban, Intraurban, Fluctuations, Transportation 20. Seco	DYNAMIC URBAN GROWTH N	IODELS		6. Performing Organization Code
1. Address DOT - TSC - RSPA - 78 - 21 5. Performing Orgenization Name and Address DOT - TSC - RSPA - 78 - 21 10. Wext Up No. TSC - RSPA - 78 - 21 DOT - TSC - RSPA - 78 - 21 11. Type of Brussels* DOT - TSC - RSPA - 78 - 21 12. Segmenting Agency Heas and Address DOT - TSC - RSPA - 78 - 21 12. Segmenting Agency Heas and Address DOT - TSC - RSPA - 78 - 21 12. Segmenting Agency Heas and Address DOT - TSC - RSPA - 78 - 21 13. Streps of Exponse and Address DOT - TSC - 1185 12. Segmenting Agency Heas and Address DOT - TSC - 1185 13. Streps of Exponse and Address DOT - TSC - 1185 14. Segmentary Nets The report the Concept of "order by fluctuation," that has appeared recently in physico - chemical and biological systems, is applied to the description of urban growth. It is shown that fluctuations play a vital role in the evolutionary process of urban growth. The evolution of a complex system cannot be known simply by studying deterministic equations describing the system. It is necessary, in addition, to study the effects of fluctuations, or historical accident, which can drive the system to new modes of urban growth. Taking account of both the deterministic elements of urban growth and the appearance of innovations at chance locations in an economic region, a transportation - sensitive dynamic model of the evolution of the organization of urban populations was developed. 17. Key Weats DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGHTIE NATIONAL FECHIN			·	8. Performing Organization Report No.
5. Performing Cignization Nems and Address 10. Wetk Unit No. (Unit NALLS) University of Brussels* 0.5743/R9530 Brussels, Belgium 10. Wetk Unit No. (ITAKS) 12. Segmenting Agency Nems and Address 10. The Contract of Transportation Transportation Systems Center Office of Systems Research and Analysis 11. There is report Cambridge MA 02142 14. Abstract 14. Supplementer News 15. Supplementery Nets 14. Abstract 16. Abstract 15. Starphone and Pariad Covered 17. Second Systems Center 11. The second Systems Center Office of Systems Research and Analysis 14. Spectral Agency Nets 18. Supplementery Nets 14. Abstract 18. Abstract In this report the concept of "order by fluctuation," that has appeared recently in physico-chemical and biological systems, is applied to the description of urban growth. It is shown that fluctuations play a vital role in the evolutionary process of urban growth. It is necessary, in addition, to study the effects of fluctuations, or historical accident, which can drive the system to new modes of behavior. Taking account of both the deterministic elements of urban growth and the appearance of innovations at chance locations in an economic region, a transportation of urban populations was developed. 17. Key Weds 12. New Weds 12. Secontry Cleast (of this regor) 17. Key Weds	P.M. Allen, J.L. Deneu	bourg and M.	Sanglier	DOT-TSC-RSPA-78-21
University of Brussels* US: Asymptotic Section of Grant Machines Brussels, Belgium US: Asymptotic Section Sectin Section Section Section Section Section Sectin Section	9. Performing Organization Name and Add	re55		10. Work Unit No. (TRAIS)
10. Second Reserve Name of Advices 10. 1001-15C-1185 12. Second Reserve Name of Advices 13. Type of Repert and Period Constant 14. U.S. Department of Transportation Transportation Systems Center Office of Systems Research and Analysis 13. Type of Repert and Period Constant 15. Supplementary Notes 14. Abstract Interim Report 15. Supplementary Notes 14. Abstract 14. Abstract 16. Abstract 15. Supplementary Notes 14. Abstract 16. Abstract 15. Supplementary Notes 14. Abstract 17. Second Constructions of a concept of "order by fluctuation," that has appeared recently in physico-chemical and biological systems, is applied to the description of urban growth. It is shown that fluctuations play a vital role in the evolutionary process of urban growth. The evolution of a complex system cannot be known simply by studying deterministic equations describing the system. It is necessary, in addition, to study the effects of fluctuations, or historical accident, which can drive the system to new modes of behavior. Taking account of both the deterministic elements of urban growth and the appearance of innovations at chance locations in an economic region, a transportation of urban populations was developed. 17. Key Words 18. Disvibutes Sections Urban, Interurban, Intraurban, Fluctuations, Transportation 11. Disvibutes Sections 17. Key Words 12. Second Cleast (of the reset) 18. Distristion of urban populations was developed. </td <td>University of Brussels Brussels Belgium</td> <td>3*</td> <td>· ·</td> <td>11. Contract or Grant No.</td>	University of Brussels Brussels Belgium	3*	· ·	11. Contract or Grant No.
12. Separating Agoncy Name and Address Interview Research and Special Programs Administration Transportation Systems Center Office of Systems Research and Analysis Cambridge MA 02142 Interim Report May 1976 - March 1977 14. Separating Agoncy Code 14. Separating Agoncy Code 15. Supplementery Notes 14. Separating Agoncy Code 16. Abstreet 14. Separating Agoncy Code 17. Key Words 14. Separating Agoncy Code 18. Abstreet 15. Supplementery Notes 19. Supplementery Notes 14. Separating Agoncy Code 14. Abstreet 15. Supplementery Notes 16. Abstreet 15. Supplementery Notes 17. Key Words 16. Other Contexplay a vital role in the evolutionary process of urban growth. The evolution of a complex system cannot be known simply by studying deterministic equations describing the system. It is necessary, in addition, to study the effects of fluctuations, or historical accident, which can drive the system to new modes of behavior. Taking account of both the deterministic elements of urban growth and the appearance of innovations at chance locations in an economic region, a transportation -sensitive dynamic model of the evolution of the organization of urban populations was developed. 17. Key Words Urban, Interurban, Intraurban, Fluctuations, Transportation 18. Distribution Streament Document GavanLable To THE PUBLIC INFORMATION SERVICE, SERINGELED, VIEGINIA 22161 18. Second Clearly (etc.), (etc.), (etc.), (et this secontexp) Unclassified 21. Ne.	brussers, bergrum			DOT-TSC-1185
"D. 3. Department of Transportation May 1976 - March 1977 Transportation Systems Research and Analysis May 1976 - March 1977 "It assportation Systems Research and Analysis May 1976 - March 1977 "It assportation Systems Research and Analysis "It assportation Systems Research and Analysis "It assport the concept of "order by fluctuation," that has appeared recently in physico-chemical and biological systems, is applied to the description of urban growth. It is shown that fluctuations play a vital role in the evolutionary process of urban growth. The evolution of a complex system cannot be known simply by studying deterministic equations describing the system. It is necessary, in addition, to study the effects of fluctuations, or historical accident, which can drive the system to new modes of behavior. Taking account of both the deterministic elements of urban growth and the appearance of innovations at chance locations in an economic region, a transportation of urban populations was developed. "V. Key Words Is. Distributes Series "Visan, Interurban, Intraurban, Fluctuations, Transportation It becoment so available to the PUELIC THEOREMATION SERVICE, SERIED, VIEGUAL 2216 "It. Ne. of Fegs: 20. Security Cleasth (of this report) "Unclassified 20. Security Cleasth (of this report) "It cleastified 21. Ne. of Fegs: "It cleastified 21. Ne. of Fegs:	12. Sponsoring Agoney Name and Addross			Interim Report
11. Supplementary Notes 14. Spensering Agency Code 14. Abstreet 14. Abstreet 14. Abstreet 14. Abstreet 14. Abstreet 14. Abstreet 14. Abstreet 14. Abstreet 15. Supplementery Notes 14. Abstreet 14. Abstreet 15. Supplementery Notes 15. Supplementery Notes 14. Abstreet 16. Abstreet 15. Supplementery Notes 17. Key Words 14. The evolution of a complex system cannot be known simply by studying deterministic equations describing the system. It is necessary, in addition, to study the effects of fluctuations, or historical accident, which can drive the system to new modes of behavior. Taking account of both the deterministic elements of urban growth and the appearance of innovations at chance locations in an economic region, a transportation-sensitive dynamic model of the evolution of the organization of urban populations was developed. 17. Key Words 18. Distributes Statement Urban, Interurban, Interurban, Fluctuations, Transportation 11. Distributes Statement Document is available to the Public the system of the system. Transportation 12. No. of Fegst 12. Fine Model of the set of the s	Research and Special	Programs Adm	inistrati	on May 1976 - March 1977
15. Supplementary Notes 16. Abstract In this report the concept of "order by fluctuation," that has appeared recently in physico-chemical and biological systems, is applied to the description of urban growth. It is shown that fluctuations play a vital role in the evolutionary process of urban growth. The evolution of a complex system cannot be known simply by studying deterministic equations describing the system. It is necessary, in addition, to study the effects of fluctuations, or historical accident, which can drive the system to new modes of behavior. Taking account of both the deterministic elements of urban growth and the appearance of innovations at chance locations in an economic region, a transportation of urban centers and the evolution of the spatial distribution of urban populations was developed. 17. Key Werds It. Distribution Stetment Urban, Interurban, Interurban, Fluctuations, Transportation It. Distribution Stetment 18. Distribution Stetment Document is available to the PUBLIC THEORDER is Available to THE PUBLIC THEORDER is senset 19. Security Cleasif. (of this report) It. Distribution Stetment 19. Security Cleasif. (of this report) It. Security Cleasif. (of this security Cleasif	Office of Systems Res Cambridge MA 02142	s center search and An	alysis	14. Sponsering Agency Code
14. Abstract In this report the concept of "order by fluctuation," that has appeared recently in physico-chemical and biological systems, is applied to the description of urban growth. It is shown that fluctuations play a vital role in the evolutionary process of urban growth. The evolution of a complex system cannot be known simply by studying deterministic equations describing the system. It is necessary, in addition, to study the effects of fluctuations, or historical accident, which can drive the system to new modes of behavior. Taking account of both the deterministic elements of urban growth and the appearance of innovations at chance locations in an economic region, a transportation-sensitive dynamic model of the evolution of the organization of urban centers and the evolution of the spatial distribution of urban populations was developed. 17. Key Words 18. Distribute Stetment Urban, Interurban, Intraurban, Fluctuations, Transportation 19. Distribute Stetment Document is Available to the Public Transportation 19. Distribute Stetment 19. Security Cleast. (of this report) 20. Security Cleast. (of this second) 19. Security Cleast. (of this report) 20. Security Cleast. (of this second) 19. Security Cleast. (of this report) 20. Security Cleast. (of this second) 21. No. of Person 22. Price 22. Price 22. Price	15. Supplementary Notes	· · · · · · · · · · · · · · · · · · ·	····	
14. Abstreet In this report the concept of "order by fluctuation," that has appeared recently in physico-chemical and biological systems, is applied to the description of urban growth. It is shown that fluctuations play a vital role in the evolutionary process of urban growth. The evolution of a complex system cannot be known simply by studying deterministic equations describing the system. It is necessary, in addition, to study the effects of fluctuations, or historical accident, which can drive the system to new modes of behavior. Taking account of both the deterministic elements of urban growth and the appearance of innovations at chance locations in an economic region, a transportation-sensitive dynamic model of the evolution of the organization of urban populations was developed. 17. Key Words 18. Distribution Stemmet Urban, Interurban, Intraurban, Fluctuations, Transportation 19. Distribution Stemmet Urban, Interurban, Urban, Transportation 11. Distribution Stemmet 19. Security Cleast (lef this report) 20. Security Cleast (lef this segon) 19. Security Cleast (lef this report) 21. Ne. of Feyse 19. Security Cleast (lef this report) 21. Ne. of Feyse 21. Ne. of Feyse 22. Firee			е. С.	
16. Abstract In this report the concept of "order by fluctuation," that has appeared recently in physico-chemical and biological systems, is applied to the description of urban growth. It is shown that fluctuations play a vital role in the evolutionary process of urban growth. The evolution of a complex system cannot be known simply by studying deterministic equations describing the system. It is necessary, in addition, to study the effects of fluctuations, or historical accident, which can drive the system to new modes of behavior. Taking account of both the deterministic elements of urban growth and the appearance of innovations at chance locations in an economic region, a transportation of urban centers and the evolution of the organization of urban populations was developed. 17. Key Words It. Distribution Stationert Urban, Interurban, Intraurban, Fluctuations, Transportation It. Distribution Stationert DOCUMENT is AVAILABLE TO THE PUBLIC INFORMATION SERVICE, SERINGEFIELD, VIRGINIA 22161 18. Security Cleasif. (of this report) 20. Security Cleasif. (of this segs) 19. Security Cleasif. (of this report) 20. Security Cleasif. (of this segs) 21. No. of Peges 22. Price Wired Gott Hadded				
In this report the concept of "order by fluctuation," that has appeared recently in physico-chemical and biological systems, is applied to the description of urban growth. It is shown that fluctuations play a vital role in the evolutionary process of urban growth. The evolution of a complex system cannot be known simply by studying deterministic equations describing the system. It is necessary, in addition, to study the effects of fluctuations, or historical accident, which can drive the system to new modes of behavior. Taking account of both the deterministic elements of urban growth and the appearance of innovations at chance locations in an economic region, a transportation-sensitive dynamic model of the evolution of the organization of urban populations was developed. 17. Key Words 18. Distribution Statument 19. Distribution Statument 19. Security Clease 10. Distribution Statument 11. Distribution Statument 11. Distribution Statument 12. No. of Pepse 22. Price 13. Security Clease 14. Distribution 12. No. of Pepse 22. Price 13. Security Clease 14. Distribution 12. No. of Pepse 22. Price 22. Price 23. Mathematical 24. No. of Pepse 22. Price 22. Price 23. Mathematical 34. Distribution 35. Security Clease 36. Security Clease 37. Securit	16. Abstract			
17. Key Words 18. Distribution Statement Urban, Interurban, Intraurban, Fluctuations, Intraurban, Fluctuations, Transportation DOCUMENT IS AVAILABLE TO THE PUBLIC THROUGH THE NATIONAL TECHNICAL INFORMATION SERVICE, SPRINGFIELD, VIRGINIA 22161 19. Socurity Classif. (of this report) Unclassified 20. Socurity Classif. (of this gege) Inclassified 21. No. of Pegos 22. Price	applied to the descrip fluctuations play a vi growth. The evolution studying deterministic necessary, in addition historical accident, w behavior. Taking acco growth and the appeara economic region, a tra evolution of the organ the spatial distributi	tion of urba tal role in of a comple: equations d to study t which can dri- bunt of both nce of innov insportation- ization of urban	n growth. the evolu system escribing he effect ve the sy the deter ations at sensitive rban cent populatio	It is shown that tionary process of urban cannot be known simply by the system. It is s of fluctuations, or stem to new modes of ministic elements of urban chance locations in an dynamic model of the ers and the evolution of ns was developed.
17. Key Words 18. Distribution Statement Urban, Interurban, Document is available to the public Intraurban, Fluctuations, THROUGH THE NATIONAL TECHNICAL Information INFORMATION SERVICE, SPRINGFIELD, Virginia 22161 Virginia 22161 19. Socurity Classified 20. Socurity Classified Unclassified Unclassified				
Urban, Interurban, Intraurban, Fluctuations, Transportation 19. Security Classif. (of this report) Unclassified 10. Security Classif. (of this report) Unclassified 10. Security Classif. (of this report) Unclassified 11. Change of this pege) Unclassified 12. No. of Peges 12. Price 13. Change of this pege) Unclassified 14. Change of this peges 15. Change of this peges 16. Change of this peges 17. No. of Peges 17. Change of this peges 18. Change of this peges 19. Change of the period of the peges 19. Change of the period of the peges 19. Change of the period of the period of the peges 19. Change of the period of	17. Key Werds	••	18. Distributio	n Statomont
19. Socurity Classif. (of this report)20. Socurity Classif. (of this page)21. No. of Pages22. PriceUnclassifiedUnclassified61CA44 Aqi	Urban, Interurban, Intraurban, Fluctua Transportation	UMENT IS AVAILABLE TO THE PUBLIC DUGH THE NATIONAL TECHNICAL BRMATION SERVICE, SPRINGFIELD, SINIA 22161		
Unclassified Unclassified 61 PCA44 Add	19. Socurity Classif. (of this report)	20. Socurity Clas	isif. (of this page)	21. No. of Pagos 22. Price ////
	Unclassified	Unclas	sified	61 PCAG4 AGI

Form DOT F 1700.7 (8-72)

•

Roproduction of completed page authorized

• |

PREFACE

This is an Interim Report whose objective is to introduce a methodology capable of an integrated view of transportation planning, permitting the analysis of the impacts of changing transport on the socio-economic and demographic structure of the system.

This report introduces two preliminary models and simulation results on the process of urbanization on a national or regional scale and the evolutionary growth of a single urban area.

We note that this Interim Report has been published after the Final Report entitled "The Dynamics of Urban Evolution, Volumes I and II," Report Numbers DOT-TSC-RSPA-78-20,I,II, October 1978. The reason for this was to not delay publication of the Final Report. The present Interim Report contains research results not published in the Final Report (This is especially true of Sections 4 and 5.) and hence should be read as a companion piece to the Final Report.

The Technical Monitor of this research effort, D. Kahn, would like to acknowledge the help he received from L. Levine for his copy editing and production editing which has led to this final version of the Interim Report. METRIC CONVERSION FACTORS

	Ī	5 5	# P	Ē		~ <u></u> ≝ 72	Ē			84	<u>.</u>			8	R A	3	÷ 3	2					
Messures	1 2 2	inches Inches	feet yards	19		square inches square yards	square miles acres			cunces	pounds short tons			fluid ounces	pints	gailons	cubic feet			Faturentia	temperatura	160 200 200	
ons from Metric	Meltiply by LENGTH	0.04	12:	0.6	AREA	0.16 1.2	0.4 2.5		SS (weight)	90.036	77		VOLUME	0.03	2.1	0.26	36 1 1	1	RATURE (exact)	9/5 (then	add 32)	80 120	
pproximate Conversi	Aan Kaaw	millimeters cantimaters	maters	kilometers		square centimeters square meters	square kilometers hectares (10,000 m^2)		YW	grams	kilograms tonnas (1000 kg)			millilitors	iters i	liters	cubic meters		TEMPE		temperature	0 	
•	S.	E E	je e	5		₽₽	» 5 2			Ċ,	ş.			Ē			îe îi			¢		6 9	
E2	37 37	55 11111111111111	91	21	91	ST Himme				21		0						9	s		E	2 	
9 9		lu.lu.	'1' 7	" " 	111	6		 '''	' ' ' 5	1971			'"	' t ' '	3		' '	יייי		' '' ' 	1,1,1	 	11111 1000
	Ted ar		55	e Ş		ĨĿ	້ຄີຄື	5 2			2	-		Ē	ĒÌ	- - -			"e "I		'n		
Mesures	1. Field		centimeters centimeters	meters kilometers		square centimeters	square meters square meters	square kilometers hectares		grams	kilograms	tonnes	•	milliliters	milliliters	liters	liters	liters	cubic meters		Celsius	temperature	
versions to Metric	Mentiply by	LENGTH	2.5 30	0.9	AREA	6.5	50-0 8-0	2.6 0.4	ASS (weight)	82	0.45	6:0	VOLUME	9	₽ ;	0.24	0.47	3.8	0.03	ERATURE (exact)	5/9 (after	subbracting 32)	
Approximete Con	When Yee Knew		inches feet	yards miles		square inches	square feet square yards	square miles acres	W	ounces	pounds	short tons (2000 lb)		traspoons	tablespoons	Cups	pints	gailons	cubic feet cubic varde	TEMP	Fahrenheit		
	in the second		. 5 .5	PA		د ار د	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ē		8	9		•	9		5 . 	E 1	; 3	* ⁻ -				

iv

.

TABLE OF CONTENTS

Section		Page
1. INTRODUCTION	•••••	1-1
2. THE EVOLUTION OF THE URBAN HIERARCHY.	• • • • • • • • • • • • • • •	2-1
3. SIMULATION RESULTS		3-1
4. DYNAMIC SPATIAL ORGANIZATION OF THE C	ITY	4-1
5. SIMULATION RESULTS FOR SECTION 4	••••••	5-1
APPENDIX: REPORT OF NEW TECHNOLOGY		A-1

	LIST OF ILLUSTRATIONS	
Figure		Page
3-1	Time Evolution of Spatial Distribution of Population as New Economic Functions are Introduced	3-2
3-2	Urban Structure and Transport Improvement: Poor Transport	3-6
3-3	Urban Structure and Transport Improvement: Better Transport	3-7
3-4	Urban Structure and Transport Improvement: Very Good Transport	3-8
3-5	Time Evolution of Urbanization: Transport Costs for Third Function Three Times Greater than for Second	3-9
3-6	Urban Structure for Given Values of Parameters	3-11
3-7	Urban Structure for Given Values of Parameters	3-12
3-8	Urban Structure for Given Values of Parameters	3-13
3-9	Urban Structure for Given Values of Parameters	3-14
3-10	Urban Structure for Given Values of Parameters	3-15
3-11	Urban Structure for Given Values of Parameters,	3-16
3-12	Urban Structure for Given Values of Parameters	3-17
3-13	Time Evolution of Urbanization: Initially Inhomogeneous Population Distribution	3-19
3-14	Time Evolution of Urbanization: Initially Inhomogeneous Population Distribution	3-22
3-15	Time Evolution of Urbanization: Different Market Thresholds	3-23
3-16	Time Evolution of Urbanization: Different Market Thresholds	3-24
3-17	Time Evolution of Urbanization: Different Market Thresholds and the Effect of Different Transport Efficiencies	3-25

V 1

LIST OF ILLUSTRATIONS (CONTINUED)

Figure		Page
5-1a	The Distribution of Residences	5 - 2
5-1b	The Distribution of Jobs Across the Cut from a to b	5 - 3
5-1c	Distribution of Services Across the Cut from a to b	5 - 3
5 - 2	Distribution of Residences	5-4
5 - 3	Distribution of Residences	5 - 5
5 - 4	Distribution of Residences of Figure 5-3 Across the Cut a to b	5-6
5 - 5	Distribution of Residences at Time t = 1.01	5 - 7
5-6	The Distribution of the Residences at $t = 3$	5 - 8
5-7a	The Time Evolution of Jobs (Left-Hand Column) and Residences (Right-Hand Column) Across the Cut a to b	5 - 9
5-7b	The Final Distribution of Services Across a to b	5-10
5-8a	The Growth of Residences at the Central Point (H^{C}) at the First Neighbor Points (H^{FN}) and, on a Different Scale, the Total Number H^{T} for the Lattice, as Functions of Time	5-11
5-8b	The Growth of Services at the Center S ^C and on the First Neighbors S ^{FN}	5-12
5 - 9	The Plot of Log H Against Distance from the Center at Different Times of the Simulation of Figure 5-5	5-13
5-10	Plot of Log H Against Distance from the Center at Different Moments in the History of Chicago (Berry)	5-14

vii/viii

.

1. INTRODUCTION

In this Interim Report we derive a mathematical model of the process of urbanization based on the "autocatalytic" effects of population and economic activity. The guiding principle behind such a model is the expression of the effects of an economic law relating the spatial distribution of supply, demand, and transportation, allowing for the fact that the actual location of a particular economic function can be the result of random, unpredictable events. Thus, we look at the interplay of a deterministic economic law with a stochastic implantation of economic functions, and we study particularly the resulting spatial structures of population density.

In the first part of this report we will describe the model and give the results of numerous computer simulations concerning the number, size and territory appertaining to the urban centers of a region. From there, we can study the effects of:

- 1) an inhomogeneous initial population distribution,
- 2) improvements in transportation,
- 3) changes of scale of the units of produciton.

We outline the manner in which the model can be generalized to describe real situations where industrial location of basic industries is subject to the inhomogeneous distribution of raw materials.

In this first part, however, we do not distinguish between place of residence and place of work, and therefore describe the process of urbanization on a regional or national scale. In the second section of this report we turn to the evolution within an urban center of such a region. We allow for the spatial relationships existing between places of residence and places of work and develop a model which describes the evolution of the urban population distribution resulting from these various processes. In the preliminary simulations that have been performed, we find most

encouraging results which seem to be in agreement with experiment. The future development of such a model seems to offer the possibility of studying the effects of modifications in the urban transport system, of employment capacities and character, and of the evolution of segregation (racial, class, religious, etc....) within the city.

2. THE EVOLUTION OF THE URBAN HIERARCHY

The principle underlying our dynamic model of urban growth is that the population which can be supported at a given locality depends upon the number of economic functions existing at that point, but the possibility and survival of economic functions there, in turn, depend upon the population existing at and around that point.

Let us first write down the basic terms that will be considered in our model and then analyze, term by term, the exact form required. The equation governing population growth is given by:

 $\frac{dx_i}{dt} = kx_i(P + \sum_k R^K S_i^K - X_i) - dX_i ,$

where P is the basic, self-sufficient carrying capacity, and RS_i^k the "extra" carrying capacity at the point i due to the presence of a unit of production of economic function k. The equation governing the development of this carrying capacity S_i^k at the point i can be written briefly as:

$$\frac{dS_{i}^{K}}{dt} = \alpha_{i}S_{i}^{K} \qquad \left[(Demand)_{i}^{K} - (competition) - \gamma S_{i}^{k} \right]$$

Let us discuss each term in detail.

The term α_i

This is a parameter which characterizes the "dynamism" of the entrepreneurs at point i. It will depend on several factors such as the size of interest rates, the availability of capital, and the "psychology" of the locality. An interesting feature, which will be brought out in later studies, is that we may imagine that for extractive industries, or for the work associated with a port, this "dynamism" is a function of position. That is to say α_i^K , for these functions, is only nonzero where the mineral resources exist,

or in the case of a port on the coast or a river, where there exists the possibility of setting up such a function. This will allow us, later, to study the effects of such location factors on these basic industries. The manufacturing, service, and retail sectors can therefore be treated within the spatial framework given by the richness of the soil of a region, the existence of mineral deposits, or the possibility of establishing a port.

The Demand

This demand for the function K situated at point i must be divided into two parts. The first part is the demand for private consumption by individuals; the second is the demand on one function made by another economic function.

The private demand will be based, we suppose, on the wellestablished experimental relation existing between the quantity demanded, Q and the price, P at which a good or service is offered.

We will suppose some law for the quantity of K demanded per individual:

$$= \frac{\varepsilon^{K}}{(P^{K})^{e}}$$

and hence, allowing for the cost of transportation between the point of "production" i and the point of consumption j, we have:

Private Demand = $\sum_{j} \frac{\chi_{j} \varepsilon^{K}}{\left[P_{i}^{K} + \phi^{K}(r_{j} - r_{j})\right]^{e}},$

where ϕ will depend on the efficiency of the means of distribution and on the importance for the function K of the distribution costs in the total price.

Up to this point we have considered that the region of study is homogeneous and that the costs of production of K at any point i, p_i^K , are uniform. However, an interesting new dimension is introduced into our model if we allow for costs of transportation inputs. This, in manufacturing industries for example, is a major factor influencing price. Thus, we may further analyze our spatial interactions by adding:

Private Demand =
$$\sum_{j} \frac{\chi_{j} \varepsilon^{K}}{\left[P_{i}^{K}(0) + \sum_{I} \phi^{I}(\zeta_{I} - \zeta_{i}) + \phi^{K}(r_{j} - r_{i}) \right]^{e}}$$

where I is the sum over the costs of transporting the various inputs from their origin ζ_{T} to ζ_{i} .

This brings us naturally to the second demand factor, that existing between economic functions. This we may write as:

 $\sum_{K'} \sum_{\omega' KK'} \chi_{i}^{KK'}$

Thus each worker $\chi_j^{k'}$ at point j in function K' demands a quantity $\omega^{KK'}$ of the good or service K situated at i. We see from this that the total flow of goods, from the extractive industry through manufacturing to the private consumer, will be all the greater if the distances involved in input transportation and distribution are small. The service and retailing occupations are, of course, less dependent on "input costs" than on distribution and will therefore follow more closely the population distribution.

As we shall see, when distribution costs are a main factor, the model shows us (Figure 3-13) that any initial differences in population densities tend to be amplified by the urbanization Thus, it could well be that the locational factors that process. influenced the initial growth of manufacturing industries, where "input" and "output" transport costs played a role, may be the predominant factors in the location of urban centers. The relative sizes and number of urban centers will then depend on the autocatalytic/competitive processes described by the model. The locational factors for an industry with several input materials and a costly distribution will not lead to a single, easily calculable point of optimum location. What will occur is that entrepreneurs at different points in the system will attempt to launch an industry. Their success will depend on the price of the product, in turn a reflection of the "input" and "output" transport costs. The population distribution, reacting to these industries and others, will undergo a differentiated nonlinear growth, and only certain enterprises will find sufficient demand to survive. While certain areas near to important "input factor" locations may be favored, the final result will certainly bear witness to the historical order in which enterprises appeared. As we shall see, competition is never perfect because of the effect of space. Thus, a small enterprise may well survive in a relatively isolated region although it may be far from an "optimum" location for the function.

Summarizing the "Demand," we find that the two parts, "Private" and "Industrial," are characteristic of different types of occupation. We have:

- a) extractive industries, where industrial demand is the most important;
- b) manufacturing industries and ports, where both private and industrial demand may be equally important;
- c) service industries, where private demand is much more important.

The "Competition" Term

With this term we attempt to put into the equation the demand for the function K at i which will be diverted to rival units of production. There may be either identical scale units of K situated at different points j or different units of K situated either at the same point i or another point j. Thus we write:

$$- \beta^{KK} \cdot \sum_{k'} \sum_{j} \psi_{jj} \gamma^{K'} s_{j}^{K'}$$

where $\beta=0$ if there is no competition between K and K' and K \neq K', and $\beta=1$ if K = K' or if the two functions are substitutional.

 ψ_{ij} is a numerical factor related to the amount which the two cones of demand of K and I, and K' and j overlap.

Thus, we calculate the volume in common divided by the total volume of the demand cone. Thus, ψ_{ij} varies between zero and unity.

The Market Threshold $\gamma^{K}S^{K}$

This term expresses the fact that for one unit of production of $S_i^K = 1$ to exist there is a certain minimum demand requirement which must be met if the function S_i^K is not to disappear. We suppose then that γ^K is a measure of the <u>scale</u> of production of the unit, and that it has two components - labor costs and the capital costs of maintaining the plant. Thus, we pose $\gamma^K =$ $R^K + C^K$, and R^K appears as the increase in population carrying capacity associated with each unit of S^K .

We can allow for economics of scale in our problem by supposing that the "price" appearing in the demand term is in fact a function of γ^{K} . Thus:

Thus, we may consider the effects of competition between units of production of different scales by supposing that:

 P_{i}^{K} (o) = $\sigma^{K} + \Delta^{K}_{\chi K}$.

$$\beta^{KK'} = 1$$
, that $\gamma^{K'} > \gamma^{K}$, for example,

but that $\sigma^{K} = \sigma^{K'}$; $\Delta^{K} = \Delta^{K'}$. By choosing different values of σ and Δ we may look at cases where there exist either large or small economies of scale, and by launching these competitive functions in our system we may test under which conditions of population density, transportation characteristics, and economic development different scales of production can impose themselves.

By launching successively a series of economic functions, the manner in which the economic relations and exchanges structure the population distribution can be studied, and we can discover which features of the resulting urban hierarchy are fortuitous and which are "imposed" by economic law. We can also test the veracity of certain economic beliefs, similar to ideas shared by certain Darwinsts in biology: that only "optimum structures" will

subsist after a long evolution, that the system can only evolve toward greater "efficiency" if left to itself, and that human intervention will always prove "wasteful" in the long run.

3. SIMULATION RESULTS

Let us now turn to the description of the computer simulations which have been performed so far. In these we have used a slightly simplified version of our general equations in that interindustrial demand is not considered. Thus, the equation actually simulated in the results which follow is:

$$\frac{\mathrm{d}S_{i}^{K}}{\mathrm{d}t} = \alpha S_{i}^{K} \left[\sum_{j} \frac{\chi_{j} \varepsilon^{K}}{(\sigma^{K} + \frac{\Delta^{K}}{\gamma^{K}} + \phi^{K}(r_{j} - r_{i}))} e - \beta^{KK'} \sum_{K'} \psi_{ij} \gamma^{K'} S^{K'} - \gamma^{K} S_{i}^{K} \right]$$

where we suppose that

$$X_{j} = P + \sum_{K} R^{K}S_{i}K$$

and that

Using this equation, we find a time evolution such as the one shown in Figure 3-1 for the values of parameters:

 $R^{K} = \frac{\gamma}{2}$.

P=60

Υ ₁ =	10.	γ_2	=	10.
ε ₁ =	.7	ε2	=	.8
φ ₁ =	10.	[¢] 2	Ξ	2.
σ ₁ =	1	σ2	=	.1
∆_1 =	9.	Δ_2	=	9.

Thus, we are looking at the spatial distribution of the population as two economic functions appear in the system. First, at T=0, we have at each point the first function, which has for each unit an increased carrying capacity of $\gamma/2 = 5$ and is characterized by very high transport costs $\phi_1 = 10$, implying that the frequency with

T=0

T=.5

T=1

FIGURE 3-1. TIME EVOLUTION OF SPATIAL DISTRIBUTION OF POPULATION AS NEW ECONOMIC FUNTIONS ARE INTRODUCED

T=1.5

Ø T=3 FUNCTION 2 FAILS T = 3.5P T=5 FIGURE 3-1. (CONTINUED)

which this service or good must be obtained is very high. We may think of a general store, butchers, bakers, or a school for example. We see that several units of this type of function can be supported by each point for P = 60 and $\varepsilon_1 = .7$.

After this, we look at the appearance in the system of the second function, which, having appeared at one point at a random moment, is imitated throughout the system at random points and moments by other entrepreneurs trying the same idea. This function we have characterized by a lower transport cost $\phi_2 = 2$.

We see that the presence of the second function at a point automatically increases employment in the local functions (Figure 3-1). As the simulation proceeds, the enterprise of type 2 is imitated on more and more points, failing to find sufficient demand on certain locations to sustain one unit of production. As the simulation proceeds, the population distribution structures such that details depend on the exact historical sequence of events. Certain broad features, however, are predictable and depend on the parameters characterizing the functions, the initial population distribution, and the efficiency of the transportation system.

In the following series of figures we can see the urbanization resulting from the impact of 2, 3, 4 or 5 economic functions launched successively. Figures 3-2, 3, and 4 show the effect of increasingly effective transportation within the system. When $\phi_2 = 3$, we have 6 centers with functions 1 and 2, while with $\phi_2 = 2$ and $\phi_2 = 1$, we have 4 and 2 respectively. The results, which are typical, tell us that the effect of improving transportation decreases the number of centers having the function 2 but increases the importance of those that do.

Figures 3-5a and 5b show the time evolution of our system for 3 functions where 2 and 3 are equally demanded ($\varepsilon_2 = \varepsilon_3$) but have transport costs of 3 and 1 respectively. It seems here that function 3 imposes its pattern of two centers on the total final structure.

Figures 3-6 to 3-12 show us the structure occurring when five functions are launched successively. In these we have supposed

P=80

FIGURE 3-2. URBAN STRUCTURE AND TRANSPORT IMPROVEMENT: POOR TRANSPORT

P=80

γ_1	=	10	γ_2	=	20
ε_1	=	. 7	ε2	=	.9
$^{\phi}$ 1	=	10	¢2	=	2

FIGURE 3-3. URBAN STRUCTURE AND TRANSPORT IMPROVEMENT: BETTER TRANSPORT

P=80

γ ₁ =	10	$\gamma_2 = 20$
ε ₁ =	.7	$\varepsilon_2 = .9$
φ ₁ =	10	$\phi_2 = 1$

FIGURE 3-4. URBAN STRUCTURE AND TRANSPORT IMPROVEMENT: VERY GOOD TRANSPORT

FIGURE 3-5a. TIME EVOLUTION OF URBANIZATION: TRANSPORT COSTS FOR THIRD FUNCTION THREE TIMES GREATER THAN FOR SECOND

T=5

FIGURE 3-5b. TIME EVOLUTION OF URBANIZATION: TRANSPORT COSTS FOR THIRD FUNCTION THREE TIMES GREATER THAN FOR SECOND

5 FUNCTIONS

P=60

After the launching of functions 1 and 2 $\,$

γ ₁ =	10	γ ₂ =	10	γ ₃	=	10	γ_4	=	10	γ ₅	=	10
ε ₁ =	.5	ε ₂ =	.4	^ε 3	=	.3	ε ₄	=	. 2	ε ₅	=	.1
¢1 =	10	φ ₂ =	4	[¢] 3	=	3	¢4	=	2	[¢] 5	=	1

After the launching of all five functions

FIGURE 3-6. URBAN STRUCTURE FOR GIVEN VALUES OF PARAMETERS

FIGURE 3-7. URBAN STRUCTURE FOR GIVEN VALUES OF PARAMETERS

FIGURE 3-8. URBAN STRUCTURE FOR GIVEN VALUES OF PARAMETERS

FIGURE 3-9. URBAN STRUCTURE FOR GIVEN VALUES OF PARAMETERS

FIGURE 3-10. URBAN STRUCTURE FOR GIVEN VALUES OF PARAMETERS

FIGURE 3-11. URBAN STRUCTURE FOR GIVEN VALUES OF PARAMETERS

3-17

that the functions 2, 3, 4, and 5 are increasingly specialized: that is, the individual demand per unit time for function 5 is less than function 4, and for 4 is less than 3 $\varepsilon_2 > \varepsilon_3 > \varepsilon_4 > \varepsilon_5$. We see that in fact functions 4 and 5 <u>can only appear after</u> the establishment of 2 and 3 because otherwise the necessary concentration of population has not occurred. We find a considerable stochastic variation in the final results, reflecting the importance of the historical sequence that has occurred, but giving rise nevertheless to a spatially organized hierarchy. The variability of the patterns would seem to reflect the small values involved in the higher order functions, which cause only a minor structuration, thus allowing more "choice" for future events.

In Figures 3-13 and 3-14 we show the time evolution of a system with an initially inhomogeneous distribution of population, corresponding to initially richer farming land. We see that this initial inhomogeneity acts powerfully to localize the area within which growth will occur.

Figures 3-15, 16, and 17 concern the change of scale of the units of production satisfying a given demand. Thus, $\beta^{23} = 1$, and the scale of function 3 is greater than function 2. $\gamma_3 = 30$, $\gamma_2 = 20$; and the economies of scale result in a unit price which falls from

 $p^{(2)} = .5 + \frac{10}{20} = 1$ to $p^{(3)} = .5 + \frac{10}{30} = .833.$

In Figure 3-17 we show the result of competition between different scale industries for different transportation efficiencies. Thus, the large scale industry (3) has a higher market threshold $(\gamma^3 = 30)$ but a lower unit cost (P₃ = .833). The question is whether it can <u>reach</u> sufficient individuals to make up for its higher market threshold. As Figure 3-17 shows us, the more efficient the transportation system, the more the "large" scale of production wins. Consequently, we will find an increasing centralization-that is, the suppression of many centers as the transportation techniques improve.

 $\gamma_1 = 10$ $\gamma_2 = 20$ $\varepsilon_1 = .7$ $\varepsilon_2 = .9$ $\phi_1 = 10$ $\phi_2 = 1$

T=1

T=2 Z T=3 FIGURE 3-13. (CONTINUED) 3-20

P = 40

FIGURE 3-15. TIME EVOLUTION OF URBANIZATION: DIFFERENT MARKET THRESHOLDS

FIGURE 3-16. TIME EVOLUTION OF URBANIZATION: DIFFERENT MARKET THRESHOLDS

FIGURE 3-17. TIME EVOLUTION OF URBANIZATION: DIFFERENT MARKET THRESHOLDS AND THE EFFECT OF DIFFERENT TRANSPORT EFFICIENCIES

4. DYNAMIC SPATIAL ORGANIZATION OF THE CITY

In this section we consider the spatial organization which will take place <u>within</u> a growing urban center when we distinguish between place of work and place of residence. Clearly, the structure of a city results from the nonlinear interaction of many different elements, and very probably the organization that occurs is due to the complex interplay of both random and deterministic factors. In this preliminary model, however, we have chosen to simplify the problem by considering three basic elements:

- a) the places of residence of the population,
- b) the places of work of the population,
- c) the transportation system which allows the movement between the two.

In order to write down differential equations describing the various interactions between these factors, we must consider the basic mechanisms operating within the system.

Let us consider first the forces of attraction between the elements. For example, an industry will attract other industries with common interests; and business offices, banks, and administrative centers will be subject to a mutual attraction. Equally, there is a tendency for residences to be grouped because of the necessity for common services, such as water, electricity, and transport. There is also an attraction between places of work and residence because, <u>excluding other factors</u>, the average employee would live as close as possible to his place of work. We must also take account of the fact that jobs connected with local services will also be attracted to clusters of residences. All these correspond to centripetal "forces."

Let us consider next the "centrifugal" mechanisms operating in the city. First, there is a spatial impossibility of placing everything at a point, and because of the economic constraints imposed by the "centripetal" forces (high land value at center), a selective repulsion acts on places of residence and work. Also,

psychological factors manifest themselves in the unwillingness (if given the choice) of the population to live directly in the shadow of a large factory and in the desire to inhabit a semirural environment away from an industrial center.

These various mechanisms can be included in a scheme of interdependent differential equations, which we will now describe.

The variables whose time evolution the equations describe are:

- H_i the number of residences at the point i.
- S_i the number of jobs in the local service sector (schools, shops, medical services).

This represents, of course, a rather simplified view of the components in interaction but leads to results which are relatively satisfying.

The means of transport within the city are considered to be distributed homogeneously, and therefore only the trip distance will play a role in the parameters characterizing the interactions in this preliminary model. In neglecting the difference between the radial and circumferential transport facility, we may, of course, eliminate the possibility of angle-dependent structures forming in our model, but this should not influence the radial distribution pattern which is of interest for the comparison with the observation of Buissière and Berry, for example. We propose to describe modifications in the transportation network by discrete variation of the parameters depending on it, and later we could introduce the possibility of a spatially dependent distribution of transportation.

The first equation describing the evolution of H is:

$$\begin{array}{l} \frac{\mathrm{d} \mathrm{H}_{\mathbf{i}}}{\mathrm{d} \mathbf{t}} &= \alpha \left(\sum_{j=1}^{m} \mathrm{D}_{j\mathbf{i}} - \mathrm{H}_{\mathbf{i}} \right) - \mathrm{\theta}_{\mathbf{i}} \mathrm{H}_{\mathbf{i}} J_{\mathbf{i}}^{n\mathbf{1}} - \mathrm{\theta}_{2} \mathrm{H}_{\mathbf{i}}^{2} \\ &+ \frac{1}{m-1} \left(\mathrm{\theta}_{1} \sum_{\substack{j=1\\ j\neq \mathbf{i}}}^{m} \mathrm{H}_{j} J_{j}^{n} + \mathrm{\theta}_{2} \sum_{\substack{j=1\\ j\neq \mathbf{i}}}^{m} \mathrm{H}_{j}^{2} \right) \right) \right)$$

The term D_{ji} corresponds to the demand for housing at the point i resulting from employment at point j, and H_i subtracts off the amount already satisfied. This will be discussed in more detail below. The terms $\theta_1 H_i J_i^{n_1}$ represent the repulsive mechanism operating between the places of residence and employment; and the power "n" can be changed to give different strengths to this effect, while the term $\theta_2 H_i^2$ represents the repulsion between residences due to crowding. These repulsions cause the "diversion" of residences from one point to another, and therefore we write the final terms which take account of the arrival at i of residences due to the repulsive mechanisms at other points. This supposes that the choice of a "new site" is uniform over the city area, but clearly if the choice is unfortunate (high HJ or H²), then displacement will occur again rapidly.

The equation for J; is:

$$\frac{\mathrm{d} J_{\mathrm{i}}}{\mathrm{d} t} = \left(\sum_{\mathrm{j=1}}^{\mathrm{m}} \beta_{\mathrm{ij}} J_{\mathrm{j}} + \sum_{\mathrm{j=i}}^{\mathrm{m}} \gamma_{\mathrm{ij}} J_{\mathrm{j}}^{2} \right) \left(N - \sum_{\mathrm{i=1}}^{\mathrm{m}} J_{\mathrm{i}} \right),$$

where the growth of the number of jobs at i depends on, first of all, N, the exterior demand, minus the sum for the whole city of the jobs satisfying it, $\sum_{i=1}^{m} J_i$. The term $\beta_{ij}J_j + \gamma_{ij}J_j^2$ are the

first terms of a polynomial expressing how the spatial distribution, within the city, affects the growth of J_i ; that is to say, how the cooperativities between different export sectors depend on their proximity. Thus, $\beta_{ij} \gamma_{ij}$ and the demand in the previous equation will depend on some inverse power law of distance.

The equation for the local services is:

$$\frac{dS_{i}}{dt} = \mu \left(\sum_{j=i}^{m} \overline{D}_{ji} - \sum S_{i} \right),$$

where \overline{D}_{ji} is the demand for local services at the point i, resulting from residences at the point j. Again we will invoke an inverse power law of distance for this function. Clearly, S_i substracts the demand already satisfied.

Now let us consider explicitly the role of "space" in these various equations. In the equation for H_i , we have the term:

	ρ + qH _i
D = J.	$-\frac{1}{1+\theta d_{ij}^n}$
īj j	$\sum_{k=1}^{m} \rho + qH_k$
	$\sum_{K=1}^{n} (1 + \partial d_{kj}^{n})$

where θ and n_1 characterize the efficiency of the transportation system taking employees to and from their place of work. When q=0, there is no cooperative effect of a "cluster" of residences.

Similarly, the terms β_{ii} and γ_{ii} are taken to be of the form:

$$\beta_{ij} = \frac{\nu}{(1 + \tilde{\theta} d_{ij})^m} \qquad \gamma_{ij} =$$

The presence of the power m_1 takes into account the fact that the distance of effective cooperation between industries, offices, etc., is much shorter than the range over which an industry may draw employees.

The final term is \overline{D}_{ij} , the demand for services at i from residences at j. This has the form:

$$\overline{D_{ij}} = H_{j} \left\{ \frac{1}{1 + \overline{\Theta} d_{ij}^{n}} \\ \frac{1}{\sum_{K=1}^{m} \frac{1}{1 + \overline{\Theta} d_{kj}^{n}}} \right\}$$

5. SIMULATION RESULTS FOR SECTION 4

Several simulations have been performed on a regular rectangular lattice of 49 points, and in Figure 5-1 we show the resulting structure for different values of the parameters for the growth of a city which starts initially at the center of the lattice. For the values of the parameters corresponding to Figures 5-1, 3, 4, and 5, the density of residences falls off from the center in approximately exponential fashion, e^{-br} , r being the distance from the center. The value of b in these arbitrary distance units is, for Figure 5-1, b \approx .65, and Figure 5-5, b \approx .8.

For other values of the parameters, as in Figures 5-2 and 5-6, 7, and 8, the density of residences at the central point falls below that of its neighbors as the evolution proceeds. The exponential "law" breaks down with the formation of a "central business district." The comparison between the growth of our simulated city (Figure 5-9) and the observed growth pattern of Chicago (Figure 5-10) shows a close correspondence.

Summarizing the results of these preliminary simulations, we have found that the differential equations proposed by us, which describe the effects of individual interactions without reference to a preferred direction or center, lead to a fairly realistic distribution of residences, jobs, and services.

In further studies it will be possible, by changing the parameters concerned, to look at how modifications in the urban transportation sector affect the city structure. Comparisons could also be made very easily between cities which grow on a plain and cities which grow on the coast (ports), telling us how the geometrical asymmetry affects the city structure.

Clearly, such methods offer the possibility of understanding the <u>full effects</u> of any innovation within a single sector as nonlinear mechanisms modify the whole urban structure. Global social and economic costs of decision could perhaps be more accurately estimated.

FIGURE 5-1b. THE DISTRIBUTION OF JOBS ACROSS THE CUT FROM a TO b (PARAMETERS SAME AS FIGURE 5-1a)

A

Ø

A

FIGURE 5-1c. DISTRIBUTION OF SERVICES ACROSS THE CUT FROM a TO b (PARAMETERS SAME AS FIGURE 5-1a)

•

FIGURE 5-3. DISTRIBUTION OF RESIDENCES A centralized structure results.

N = 1.7	v =	2 v	' =	.5	Ð	=	5	n	=	2
$m_1 = 5$. α =	30 e.	1 =	10	n ₁	=	10	μ	=	10
$\epsilon = 10$	θ =	5	0 =	10	^θ 2	=	0	ρ	=	1

н 1 о н 10 о н 1

 $m_1 = 1.7$ $m_1 = 5$ e = 10

5-7

ė.

FIGURE 5-8a. THE GROWTH OF RESIDENCES AT THE CENTRAL POINT (H^C) AT THE FIRST NEIGHBOR POINTS (H^{FN}) AND, ON A DIFFERENT SCALE, THE TOTAL NUMBER H^T FOR THE LATTICE, AS FUNCTIONS OF TIME

FIGURE 5-8b. THE GROWTH OF SERVICES AT THE CENTER \textbf{S}^{C} and on the first neighbors \textbf{S}^{FN}

DISTANCE FROM CENTER

FIGURE 5-9. THE PLOT OF LOG H AGAINST DISTANCE FROM THE CENTER, AT DIFFERENT TIMES OF THE SIMULATION OF FIGURE 5-5

FIGURE 5-10. PLOT OF LOG H AGAINST DISTANCE FROM THE CENTER AT DIFFERENT MOMENTS IN THE HISTORY OF CHICAGO (BERRY)

APPENDIX: REPORT OF NEW TECHNOLOGY

The work performed under this contract, while leading to no invention, had produced preliminary dynamic models of the evolution of the spatial organization of urban centers and urban populations based on the concept of "order by fluctuation," which are improvements over previous urban models. It was shown that fluctuations play a vital role in the evolutionary process of urban growth (Section 1). The evolution of a complex system cannot be known simply by studying the deterministic equations describing its internal dynamics. It is necessary, in addition, to study the effects of fluctuations or historical accident which can drive the system to new modes of behavior. Taking account of both the deterministic elements of urban growth and the appearance of innovations at chance locations in an economic region, a dynamic model of the evolution of the spatial organization of urban centers was developed in Section 2 and simulations produced in Section 3. The dynamic model of the evolution of the spatial distribution of urban populations was developed in Section 4 and simulation results presented in Section 5.

150 copies